
 
Get the Software! 

 
 

 
A.I. Wars 

The Insect Mind 

 
A.I. Wars 

Armor Commander 

 

 
 

The most fun you’ll 
have programming! 

 
 

 
Available at 

TacticalNeuronics.com



 2 



 3 

 

 
 

A.I. Wars User’s Handbook



 4 

 

 
 

 
 

 



 5 

 

 
A.I. Wars 
User’s Handbook 



 6 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright 1996-2005 By John A. Reder Jr. All rights reserved. 
No part of this book may be used or reproduced in any manor 
whatsoever without written permission, except in the case of 

brief quotations. 
 

Published 2005 
Printed by CafePress.com in the United States of America



 7 

I would like to thank all of the players of A.I. Wars for their 
input.  This game continues to grow and get better with your 

help.  
 

Happy Hunting! 
 



 8 



 9 

Acknowledgements 

 
A.I. Wars concept, design and programming, 2D MIDI music 
and some splash screens textures and artwork: 

John A. Reder 
 
Some rendered splash screens and most in game 2D Cybug, 
effect and environmental 2D graphics and 3D Cybug Flag:  

Alvin Helms 
 
CAICL editor design input provided by: 

Vidar Braut Haarr 
 
3D Engine MIDI Music by: 

PIX 
 

Tournament level Cybugs have been donated by: 

Devon Ellis 

Tony Dwyer 

Marty Lawson 

Ted Mitchell 

James Press 

Shea Parkes 

Steven Mast  

Esa-Pekka Pälvimäki 

 
 
Please send any comments, bug reports and suggestions to this 
E-mail address: 

John.Reder@TacticalNeuronics.com 

 
To find out the latest news, tournament sites, Cybug 
development tips, A.I. Wars forum and A.I. Wars updates visit 

the official A.I. Wars web site at TacticalNeuronics.com 

 



 10 



 11 

Table of Contents 

 
Section I 
 
13 Our Future 
17 What is A.I. Wars 
19 How to play: Creating an A.I. unit  
20 To edit a Cybug 
22 Editor features 
23 Verifying your code 
24 A.I. file security 
25 Preparing for battle 
27 Sound effects 
28 Music Options 
29 During the battle 
30 Clicks 
31 Overheat 
32 End of battle 
33 Debugging 
35 After the battle 

36 Scoring 
37 Recorded battles 
38 Scenarios 
39 Damage settings 
40 Map editor 
41 Tournament mode 
42 Advanced tournament mode 
43 Play by e-mail or file transfer 
 
Section II 
 
47 CAICL Quick reference 
51 Command language syntax 
52 Unit identification and security 
54 Debugging commands 
55 Program branching 
56 Unit rear data resource ports 
57 Unit damage status and repairs 
59 Randomizing A.I. 
60 Scanning for objects and other units 
64 Movement and location 
67 Weapons Control 
71 Protection 
73 Nesting 
75 User variables 
76 System variables 
79 Advanced Commands 



 12 

 
81 High level if statements 
83 Appendix: Battle notes 
84 Appendix: Scanning 
85 Appendix: Weapons and damage 
87 Damage, points and burn rate grid 
88 Other fuel burn factors 
89 Other scoring factors 
90 Advanced cMath finctions 
 



 13 

 

 

Our Future... 
 

The risks of warfare will be bloodless ones!  Our willingness to 
commit troops will be a simple matter of economy and 
production.  Militaries worldwide are developing automated 
intelligent fighting machines.   These machines will be much 
harder to stop than the typical human soldier and will be able to 
react and move with speeds and agility that will be impossible 
for its human opponents to match or mimic.  For example, we’ll 
see aircraft that can travel and turn so fast they’ll generate G-
forces that would liquefy its pilot (if it had one.) These machines 
are not science fiction, and are currently in development today.  
They have no fear, and will show no mercy... 
 
Tactical Neuronics has introduced its new line of automated 
all terrain six legged fighting machines code named: Cybugs.  
You are now the proud owner of A.I. Wars (The Insect Mind) 
(Cybug battle simulation software). This simulator allows 
potential Artificial Intelligence (A.I.) programmers to perfect 
the strategies necessary to take our Cybug A.I. to a level that 
could adaptively compete on the modern battlefield.  
 
The Cybug is a programmable mobile platform, with six legs 
that have been incorporated for stability on multiple terrain 
types, the original two and four legged designs proved too 
unstable to withstand the blast forces from explosions on or 
near its center of balance.  The Cybug is an all weather assault 
platform that is loaded with an internally concealed missile and 

grenade launching system and an external projectile weapon 
located in the center of its fluid cooled Cybrain appendage 
(head).  The Cybug caries an internal power source that uses a 
crystalline fuel converter to power its engines and internal 
electronics.  This power system also runs a cooling system that 
can help keep the Cybug cooled but it can be overheated if 
items like the shield generator run for an extended period of 
time.  This power system can be discharged through the 
shielded armor shell of the Cybug, but this discharge will also 
slightly damage this shell as well (note: This discharge can be 
set high enough to self destruct the Cybug if the need arises). 
Its CPU runs single commands transmitted from a remote 
Battle Simulation Coordination Processor (BSCP).   The 
BSCP negotiates commands in packets that are weighted based 
on their resource consumption.  Movement commands are 
considered heavier than scan commands and logic commands 
are simple and can be utilized in larger quantities.  The internal 
power source can convert Ammilian alloy (an explosive metallic 



 14 

substance) into usable ammunition.   The Ammilian converter 
can produce simple projectiles easily but requires more alloy to 
create items like mines, grenades and missiles.  Grenades and 
missiles also utilize fuel to propel them to their targets.  The 
Cybugs can gather resources (fuel and ammo) while on the 
battlefield by collecting flagged replenishment packs.  Cybugs 
can also transfer resources to each other by connecting their 
resource ports located in the rear or the Cybug.  There is also a 
data port that has a communications link where commands can 
be inserted manually into the Cybugs CPU for maintenance 
reasons (Warning: our engineers fear that this port may be a 
security risk if enemy Cybugs can gain access it.)   
 
Cybug squads (Hive formations) are possible since each unit can 
transmit an IFF code.  This code identifies a Cybugs secret team 
name, multiple Cybugs with the same code are on the same 
team, and can identify each other as friendly units to avoid 
accidental friendly fire damage.  Cybugs that have the same IFF 
codes can transmit data to each other using the hive variables 
on the BSCP.   All Cybugs have access to the global BSCP 
systems system variables that are considered common 
knowledge among all Cybugs in a simulation.    
 

Goal orientation can be utilized in a simulation via the use of 
Queen Cybugs and the Strategy Node.   The BSCP can be set to 
terminate the battle when a Queen is killed, typically awarding 
the killer with a large number of points.  The strategy node can 
be used as a refueling and ammo depot as well as its ability to 
grant award points to any Cybug occupying it for a 
predetermined amount of time.    
 
Your goal as a Cybug A.I. developer is to develop competent 
Cybug reflexes, plus offensive and defensive strategies to 
ensure the survival of your Cybug or your team of Cybugs in a 
battle simulation.   You will be able to develop their A.I. using 
the Cybug A.I. Command Language (CAICL) provided.  The A.I. 
editor comes complete with a description of each command, as 
well as code verification and debugging tools.   Cybug A.I. files 
can be encrypted and password protected for transport outside 
of the BSCP. 

 



 15 



 16 



 17 

What is A.I. Wars? 
 
A.I. Wars allows you to design the Artificial Intelligence of 
an insect-like mechanized warrior (Cybug) and send it into 
battle simulations to test its wits against others.  
 
This game is about programming.  There I’ve said it, yes, 
programming.  Now don’t get discouraged; this is a game, not a 

computer science course.  The Cybug A.I. Command Language 
(CAICL) is easy to learn, and simple to apply. Some of the most 
fearsome Cybugs can be created with a just few lines of well 
thought out code.   
 
The goal of playing A.I. Wars is to have fun.  This is not an 
action game that involves hand/eye coordination, but rather a 
game of logic and strategy that is designed to give you the 
pleasure every programmer gets when they write a successful 
and efficient program and the excitement of watching your 
creation pound its competition. 
 
A.I. Wars will give you the basic tools to design your Cybug and 
experiment with it in varied battle situations. This game has 
multiple options to define the layout of each battle simulation. It 
is designed to encourage friendly competition between A.I. 
designers with options like encrypted ASCII A.I. files for file 
trading that will allow you to hold tournaments and contests. 
 
Remember that “Smart bugs never die” and “May your 

A.I. Bugs be without A.I. Bugs!” 

 



 18 



 19 

How to Play 
 

Creating an A.I. unit 
 
Example Cybugs are included with A.I. Wars. These Cybugs are 
basic and are designed to let you see how Cybugs may be 
programmed.  A few tournament level Cybugs have also been 
donated to give you an idea of just how competitive some 
Cybug developers are. The scenarios that are included will 
utilize these example Cybugs and give you basic opponents that 
can be pitted against your home-grown Cybugs.  Once your 
home-grown Cybugs are developed to the point where the 
example Cybugs present little challenge, then you are ready to 
send them to your friends via E-mail, BBS’s, FTP and Web sites 
to participate in contests and tournaments.   
 



 20 

To Edit a Cybug 
 
1. Click on the Program A.I. button in the Battle setup screen 

or the Edit button in the main title screen. 
2. Select File, then New or Open to start editing your Cybug. 
3. Develop the Units A.I. using the commands and syntax of 

the A.I. command language. (Save your work periodically 
using the save file button.) Note: there is a 2000 line limit 
on A.I. file length. 

 
Note: You may also launch A.I. Wars with the /E: option to load 
the editor with the specified A.I. file upon start.  Example: 
AI_WARS.EXE /E:droneA1.ai 
  
Example A.I. Code: Notice how simple the code is. One mistake 
many Cybug developers make is to get lost in sophistication and 
forget about survival and offense.  A good basic strategy and 
compact code are usually the best ingredients for success.  As 
you can tell by its name, his primary job is to defend and 
evade.  

 
name survivor 
iff code x111 
author Tactical Neuronics 
 
raise shield 
phase1: 
long range scan 
if scan found enemy then  
 gosub killit 
end if 
scan perimeter 
if scan found enemy then discharge energy 
if bump barrier then move backward 
turn right 
if damage is > 1 then attempt repairs 
goto phase1 
 
 
killit: 
lower shield 
if missile ready then launch missile 
raise shield 
turn left 
move forward 
return 
 

4.    Once you are done programming select the Save button. 
 
Note: to edit the file after you have left the edit screen you 
may choose which file to edit by clicking on its name in the 



 21 

Battle setup Cybug file list and select the Program A.I. button.  
This will load the selected A.I. file. 

 



 22 

Editor Features 

 
The editor has some built in features to make it easier for you 
to use the CAICL.  The main feature is the CAICL Help button, 
this will give you a quick reference to the language and its 
syntax.  The CAICL Help window has a drop down text box titled 
'Table of Contents' which will jump to the section of the CAICL 
reference that you need.  You can also search for a specific 
string by typing it into the text area given and clicking on the 
find button. 
 
Another feature in the editor is the syntax help line given at the 
top of the code window.  This line allows you to type in the first 
few characters of a code string and will attempt to finish it for 
you as well as provide a guide to its syntax.  You can click on 
the insert button or press enter to insert this code into your 
code text at the current location of your code text cursor.  You 
can search for any text string that you type into this box by 
clicking on the find button.  Note: to highlight all of the text in 
this box double click on it.  To do cut and paste anywhere in the 
editor simply right click in the text windows provided. 

 



 23 

Verifying your code 

 
Your code can be compared to a syntax checking engine that 
will turn your correct text to blue and your variables red and 
comments green when you hit the verify button at the top of 
the editor window.  This should help you catch simple keyword 
and variable misspelling errors in your code.  For advanced 
users, you may choose to use the CAICLPro editing software 

available from TacticalNeuronics.com. 



 24 

A.I. File Security 

 
If an A.I. file uses the password command the file will not allow 
you to edit it without entering the Security Password in the 
Security Password dialog window. 



 25 

 

Preparing for Battle 
 
A battle requires the following options: 
 
� One or more A.I. units in the Cybugs in Next Battle List.  
� A Map Selected in the Battle Map field.  
� Battle Options load to the default or last battle settings. 

You can change these settings by selecting the desired 
option check boxes as well as clicking on the Music, video 
and other settings button.  Here are some of the more 
common options: 

� The Starting Ammo option allows you to set the basic 
ammo load of the Cybugs when the battle starts.  Cybugs 
can gain more ammo after the game starts when they 
gather flags. 

� The Maximum Damage field. (a Cybug dies when its 
damage reaches the maximum damage setting.  99 is the 
maximum setting.) 

� The Starting Fuel Field. (A Cybug burns fuel for 
movement. Damage to a Cybug causes the Fuel to burn 
faster as the fuel cells and motors are damaged. These 
cannot be repaired during battle.) Note: a small amount of 
fuel burns every so often due to the Cybugs need to cool 
his onboard computer. 

� Note: These options can be set automatically for you if you 
select a scenario from the Scenario list.  You can save your 
battle settings by choosing the Create Scenario button. 
This creates a scenario (.SCN) file. (see scenarios.) Other 
options include Disable IFF Codes, Disable Strategy 
Node, Position Strategy Node, Blood Mode, One click 
one command, Disable shield overheat, End Battle on 
Queens death…  May be also be selected. 

� The End battle if Cybugs stop roaming option will force 
the battle to end if the Cybugs stop moving forward or 
backwards for 100 clicks.  This prevents the battle from 
degrading to a point where the only Cybug(s) with fuel are 
camping in one spot.  When this occurs the battle can last a 
very long time since the only fuel drain is on every 10th 
click. 

� Advanced Battle settings can also be set allowing you to 
dictate the types of damage and fuel and ammo costs for 
each weapon and scoring values. 

� You have four possible battle view options: 2D Birds Eye, 

2D Follow, 3D and Text Only.  The 2D Birds Eye view 
shows you the complete map (unless the map resolution 
size exceeds your current screen size.  The 2D Follow Cam 
shows you a transmission from your Cybug, which displays 
his surroundings.  This view stays centered on the selected 



 26 

Cybug and follows it as it roams around the battlefield. The 
2D modes are best used for Cybug development. Text 
mode simply shows you the battle summary text as it is 
being created (Note: This is the fastest mode). 3D mode 
will script the battle and launch the 3D Battle Viewer.  This 
mode is the most realistic. All battles can save their results 
to a 3D script for viewing at a later time with the recording 
viewer if desired. 

� Once all Fields have the desired values select the Start 
Battle Simulation button to start the battle. 

 



 27 

Sound Effects 
 
If your PC has the proper hardware and drivers for sound you 
have the option of having digitized sound effects.  
 
Note: You may use the Text Mode (No battle graphics) check 
box to speed up the battle sequence.  This will replace the 
battle mode display with a text play by play depiction of the 
battle as it happens.  



 28 

Music Options 
 
You are given 3 Music options from the battle setup screen.   
 

1)  MIDI  (this plays MIDI files located in the A.I. Wars home 
directory.) 

2)  CD Audio (This plays any CD you have in your CD ROM 
Drive.) 

3)  No Music – this option may increase the speed on some 

versions of windows.  If A.I. Wars is too slow, try this 
setting. 

 
Select which ever option you desire.  The selected Music will 
play during the battle simulation mode. 

 



 29 

During the Battle 
 
Closing it using the Cancel Battle button in the Birds Eye view 
can stop the 2D battle. You are also given the chance to toggle 
sound effects, pause music and show unit names using the 
buttons displayed above the Birds eye battle view window.  If 
you are using the Follow cam you can get to the Birds Eye view 
by clicking on Follow Cam 'close' button.    
 
To cycle to another Cybug in the Follow cam you can click on 
the appropriate Cybug number button.  Dead or unused Cybug 
buttons will be disabled. 
 
If the Show Unit Names option is selected in the Birds Eye 
view the Cybugs will have their names next to them. They will 
have a default name of AI# and their assigned number unless 
the A.I. file contains the name command. Following their name 
you will see their ammo, damage, remaining fuel and their heat 
level. 
 
Example: #1 Crusher (15,3,1700,11) 
 
The 3D viewer lists its available keyboard commands in the top 
left corner.  You have the choice between following a specific 
Cybug (by selecting its number or the FREE CAMERA mode (ctrl) 
which allows you to roam the battlefield with a free-floating 
camera.  Note the (Page Up) and (Page Down) keys control 
camera up and down and the arrow keys move forward, left, 
right and backwards while the mouse allows you to control 
where the camera points. The (P) key can pause the battle and 
the (Esc) key will exit the battle at any time. 

 



 30 

Clicks 
 
Clicks are the time slices in a battle.  All Cybugs share these 
time slices on the CPU where all Cybugs get to execute at least 
one command every click. In the one click one command mode 
each Cybug gets to issue one line of code per click. If the one 
click one command (OCOC) option is not set then the Cybugs 
can execute multiple commands in a single click (Smart Clicks).  
Logic commands take only 1/10 of a click and scan commands 
take 1/3 of a click and movement, firing weapons, discharging 
energy, cloaking and attack commands take 1 click.  
 
Hint: one command line can contain many commands as long as 
they fit into the syntax of a single command string for example: 
 
if value ~v1 = 10 then if not bump barrier then if ammo is > 10 
then launch missile. 

 



 31 

Overheat 
 
Overheating can occur if your Cybug uses its shields for a time 
period longer than the maximum overheat click setting.  For 
example if a Cybug uses its shield for 30 clicks without turning 
it off and the overheat setting is 30 then the Cybug will go 
offline and drop its shields for 10 clicks, during this time the 
Cybug cannot do anything but sit there and hope nobody 
attacks it.  The Cybug gains 1 heat for each click its shields are 
raised and looses one heat (cools) for every click its shields are 
lowered. 

 



 32 

End of the battle 
 
The battle ends when one of these conditions are met. 
 
• All A.I. units run out of fuel 
• When only one team remains  
• The user cancels the battle. 
• A Queen Cybug has been killed and the Battle ends on 

Queens death option is set. 

 



 33 

Debugging 

 
You will be able to debug your Cybug by clicking on the Cybugs 
file name in the battle list before starting the battle (This will 
place a red flag on the selected unit so you can follow it as it 
moves through the battlefield. (The Follow Cam will default to 
this Cybug when the battle begins.) When the unit fires or 
launches its weapons, enables shields or scans you will see the 
actions represented in the battles graphics.  If you selected the 
Debug Mode on for marked Cybug check box the debug data 
will be displayed in battle including the current line of code 
being processed by the selected unit.  When debug is on, the 
battle can be slowed down using the scrollbar at the top of the 
display so you can have time to analyze the debug information.  
A special map has been created called debug.map to help you 
see the data better.  This map will not allow units and graphics 
to enter the debug display area. Note: You may use any map 
but the debug map is recommended for easier viewing.  
 
You may place the commands debug on and debug off in your 
Cybugs code.  When activated, this will save any code that the 
unit sees into an area called the Debug Watch buffer.  The 
buffer will display any commands that the unit sees and its 
reactions to the commands including error and warning 
messages about possible A.I. Command language errors.  You 
can view the buffer contents by choosing the debug watch 
window button in the battle summary screen. 
 
Note: The Cybug must be marked by clicking on the Cybugs 
name in the battle list found in the battle setup screen (a yellow 
light will be on next to the selected Cybug). 
 



 34 

Example Debug Watch Buffer Information: 

 
CLICK  SC LINE COMMAND 
0      4  8    start: 
0      5  9    raise shield 
1      0  10   generate random 
1      1  11   assign v0 0 
1      2  12   goto hunt 
1      3  14   hunt: 
1      4  15   math v8 = 18 - 22 
1      4  15   assign v8 -4 
1      5  16   math v9 = 11 - 8 
1      5  16   assign v9 3 
1      6  17   if value -4 > 0 then goto gowest 
1      7  18   if value -4 < 0 then goto goeast 
1      7  18   >>> condition met executing command: 
goto goeast 
1      7  18   goto goeast 
1      8  76   goeast: 
1      9  77   if facing east then goto e1 
1      9  77   >>> condition met executing command: 
goto e1 
1      9  77   goto e1 
2      0  82   e1: 
2      1  83   long range scan 
2      3  83   >>> scan identified: mine 
2      4  84   if scan found enemy then goto missle 
2      5  85   move forward 
3      0  86   if bump barrier then math v0 = 0 + 1 
3      1  87   if value 0 > 6 then goto ramble 
3      2  88   goto hunt_y 
3      3  19   hunt_y: 
3      4  20   if value 3 > 0 then goto gonorth 
3      4  20   >>> condition met executing command: 
goto gonorth 
3      4  20   goto gonorth 
 



 35 

After the Battle 
 
The Battle will display the battle statistics.  They give a 
description of the battle settings, a play by play description of 
the battle, and the Cybug individual/team standings and scores.  
 
You can Print this or Save this to a file from this screen.   
 
You can view this screen later using the Last summary button 
from the main battle setup screen. 
 



 36 

Scoring 
 
Units get points for inflicting damage on other units while 
keeping their damage low.  To gain extra points program your 
Cybug to locate the Strategy Node and have it go there.  
Cybugs sitting in the strategy node can gain points, ammo and 
fuel for each click while sitting in the node. 
 
Team scoring consists of the entire point collection of each 
Cybug containing the same IFF code.  Cybugs with the same IFF 
code are considered members of the same team! 

 



 37 

Recorded Battles 
 
The battle recorder allows you record and playback battles.  The 
recorder can be found by clicking on the Settings and 
recorder button in the battle setup screen.  You have 5 
controls to choose from that pertain to the recorder, they are: 
 
1) The check box that tells A.I. Wars to save 2D battle 
recording to a file. 
2) The field that allows you to input the name of the 2D 
recording (.rec) file. 
3) The check box that tells A.I. Wars to save 3D battle 
recording to a file. 
4) The field that allows you to input the name of the 3D 
recording (.3dr) file. 
5) A button that opens the battle replay utility (View Recorded 
Battle). 
 
The battle replay utility allows you to select a recording (.rec 
or .3dr) file for replay and run it.   The 2D battle replay looks a 
little different than the actual battle. This utility has 2 windows: 
 
1) The battle select/start/mark Cybug and statistics window. 
2) The battle replay window. 
 
Note that during the 2D battle replay an energy discharge is a 
red flash and a fire weapon is a white flash on the Cybug.  The 
selected Cybug has a green circle over it. 
 

 



 38 

Scenarios 
 
Scenarios allow you to select from a list of pre-selected battle 
configurations. These configurations include a group of Cybugs, 
a battle map and preset ammo, damage and fuel settings. A.I. 
Wars comes with some default scenarios to give you some basic 
battle settings in which to test your Cybugs. 
 
You may save any battle configuration by choosing the Create 
Scenario button.



 39 

Damage Settings 
 
You can change the damage caused by actions like landing on a 
Mine, Overloading your Cybugs energy supply, Primary weapon 
hits and Missile Hits by selecting the Settings and Recorder 
and Advanced settings buttons.    
 
Note: The Advanced Settings apply to all scenarios and battles.  
You can return to the default settings by selecting the Restore 
default values button in the advanced settings window. 

 



 40 

The Map Editor 
 
You can Edit Maps to be used by the Battle Simulator by 
selecting the Map editor button. 
 
The editor has a pull down window that allows you to select the 
graphics that you want to add to the map.  Use the mouse left 
click to place the graphics and right click to remove them. 
 
Note: the unit start graphic depicts where the units will start 
when the map is used in battle.  Only the first 10 will be used.  
If starting positions are not set in the editor then the battle 
simulator will use default starting locations.  If you right click on 
the Cybug start graphic box you will be given the option to 
actually set the number of the Cybug that will start in a specific 
location. This allows you to setup cool team battle maps and 
define Queen Cybug locations etc. 
 
From the pull down window you can save, create a new map, 
clear the map or exit the editor. 

 



 41 

Tournament Mode 
 
This mode allows you to play any of the Cybug files in the game 
directory (up to 500 A.I. files) against each other.  The final 
results will be displayed in the battle statistics screen at the 
end. Also the entire statistics and play by play readouts will be 
saved to a file named contest.txt (you have the option to 
rename this file in the tournament screen).    You could post on 
the web, mail or E-mail this file to the authors of the competing 
Cybugs. 
 
Note: You are given the option to disable IFF Codes during 
tournaments. This disables the Cybugs ability to recognize 
friendly units. 
 



 42 

Advanced Tournament Mode 
 
This feature is added to allow tournament sites the freedom to 
come up with their own tournament engine.  The A.I. Wars 
executable AI_WARS.EXE has three possible command line 
parameters that will allow batch automation.  These parameters 
are: /S, /B and /M. 
/S: = scenario file name (.scn) 
/B: = battle summary text file name (.txt) 
/M: = movie recording file name (.rec) 
 
Example: 
AI_WARS.EXE /S:battle08.scn /B:battle08.txt /M:battle08.rec 
 
An advanced tournament batch creator could create scenarios 
and then launch the AI Wars engine to run the battle and then 
look at the battle summary to create the next scenario and 
continue this loop until the tournament is done. 

 

 



 43 

Play By E-Mail , File Copy or 

Transfer 
 
The tournament mode is a great way to hold contests for all of 
your friends’ Cybugs. You can have them give you their Cybug 
files on disk or have them Upload or E-mail them to you.  The 
A.I. files are encoded but they are pure ASCII text so you can 
just E-mail the text and cut and paste it into a text file with the 
.AI extension or import the file using the File / Import 
encrypted file option in the Cybug A.I. file builder window. 
 
You may use the File / View Encoded Version button in the 
A.I. editor develop mode screen to view the A.I. file in its 
encoded form. You may cut and paste this into your E-mail or 
text editor for distribution if you wish. 
 



 44 

Example ASCII encoded AI file:  
 
You can place any comments you like here before the <v4ai> 
tag . This text is striped from the file if it is edited. 
 
This is the encoded ASCII version of the specified 
A.I. File. 
You may cut and paste this data into E-Mail messages 
etc. for A.I. File distribution. 
 
<v4ai> 
b½RcñrXVÖe)óXeñbzùcqjYf½e£cXy!b!YeMecMmUzÜcqKYñÑez«eú,
Z½dc.mYpñf£]h/$S½RcWjbL%WWKZ!ZYpÿe?¼Y¢$S£pR£¼V?@c{_ZpP
aLnY£&X)óZ)íZprV?!c{*a£aVVºZz¿QyºWyÑXV^dpæ 
dÑqW{lSfcT.ZW£ÑgLóXf^cqhbMgXeºWzºgLnc{nc.lcqra¥dc?YOfÑ
e{Uf)pb.mUWaYpÖgz}Zpsc)æc{&c_cbqZVÑOYpƒf?Uefyb.fbWjY£ñ
fyÑXVnb¥Xc_obWga¥SYzYOf¥ez«fK,cWncqrW£¿fyÑXVvb£nd¥Za.i
U!Rd½cYfáX{ófLrcÑxUWoX?½gzLgz@dqSV.bb¥ZcWkT£VY{»efÖXf%
c!fbqoO(ñf£{Zp^b?ædz&bWjc¥Zc?rXz¿efñXf&cqdb£%X{¼Y?}fñz
b!Kc)&XV%WLvegPXpÿX{æf{%c£(cqdX)«hKÑXVvb£nd¥Za.iU!Rd½c
YfáX{ófLrcÑxUWoX?½gzLh{*dWRV.ob!bb.fT£VX{óX{ƒd£nc£( 
bWjY£ñfzLgf!bÑQe)&c_cbqZVÑOYpƒf?UeV!cMldLlOfùfp|hU,c)ò
c.qSfib½RVÑaXV¡f)Uef@d.ma£%XzófV½Zp&cVòdz&b!aU!PcqUW£ú
e?Uae,W{(c_cXpñY?¿hñ%c{ndgbbWoS)ZdWNQz¥ez«fK,cWnc.iXfN
f)ógfzdñneMebMiU!feqZYfTfpóef&Tfmb!aQzùfp|hU,b¥SeWka£%
bqZc½UZpTgVÑeV!VWfcMoYpNf)ógfzdñUT!fbV%bgMd)òX)íX{ªf(,
YV(Vñ%Yñ«f)óZpndqXc_jcWoU!dc½XW£Ñf£ƒVo!cÑnc½ZQz¼g)ªiLn
dVöT{kb!aU!NeqUYzTep«fz%c!dcp%Yñ«f)óZptcÑXd)&a½Vc.ddWM
Y/¢V)ñfV&dL(c!oW£¿hKÑXU$S{ÆcWocqdbqdYzYOfúe?ÖeV%b.sbL%
Y?]gz}hfzTLRc¥cUWma¥Zc.WYVTfLƒXeñVWsbqZYfNf{úh{@U¥VcWk
a¥jcV+T£VX{óX{¥d{!b¥nbñ%X{ùY?dZp&cVòdz&bgjcÑaVÑZW£ÿe)Ü
e¢ÑTfmb!aQz¿fVógV@c?nc¥pUV<U!fdMMYfTeñÜf?@VWqa.iXfÑgpe
Xy!cfAV.oa.ibgad)rX{¥X{oXf&cqdb£%X)ÑhLúZp%b!Rc!lbñ|S)Z
cqNYñíf£¥d{!b¥nbñ½O(ñf£{Zpod!Qd?&a½Vc.ddWMY?TgVÑeV!VWs
c.mYfNgf[gp&TLRc½lc_jU!eefòY?ƒVúÖVo!cMmbMhZpnW[óg£@d?ò
dñ&c!cb½Qd!LO(ÿe{ªfzrVWvbMVYzÑgyÑXV%b!Md¥bUWnb.Uc½TXe¢
V)ƒd£nc£(bWjY?¢fVªgU$S½Mc?&c!Xa¥ZVÑNYpæf)íXfrc¥dbÑtQz¡
g)¿he,bÑRc_jdLlSgSd½bYpTgLæd{%d)pR£lOf¿fVógV@c?%YfnR¥o
c¥dd?rYLíe{æVo!cÑnc½ZQz¼g)ªiLndVöT{kbgjcÑaVñòXzƒe?¥fzn
c¥ccMhO(ñW[óh)nc{öd_jV£½S)ZegcY?ÿX{¥e)tcqsSfiYVÑhf[Zps
cÑVeqXcqYS)Zd_WZLíX{úfV%dÑZcqYO(ñf{úh{@U£æc.qbMmc.Md.L
YpùVúÖVo!dqZb¥YYpúa)lXy!dqYdÑkUWgbqRefYOfùf?ôeU,cWncqr
W£¿fyÑXVzcÑZc)&bWjc.icqZXe¢V)ÿfV(cL(bWjY?¢fVªgU$S½Kd_q
cL%a¥RegMY?£efÖeL@cñpR£lOf¿fVógV@c?*YfnR¥oc¥dd?rY?ÑeñÑ
f/$S¥lcMqXpNf?úh))b!VcznR¥hcqhc{r 
 

Check out the A.I. Wars web site for additional A.I. Wars files 
and upgrades that you can use in this game.  We encourage 
players to develop swap areas and sites to distribute Cybug .AI 
files freely.  
 
Note: the map files and scenario files are also in ASCII text 
formats so you can transfer them the same way as the .AI files. 



 45 

 

 
 

 
 
 

SECTION 
II



 46 



 47 

Cybug A.I. Command 

Language (CAICL)   
 

 

1.1 Quick Reference  
 
General Commands: 
; [comments] 
assign v# ~v#  
assign v# [any value] 
assign v# #[system_variable] 
attempt repairs 
author [developer’s name] 
beep 
cloak on  
cloak off  
cmath v# = (simple or complex math formula)   
cross scan 
corner scan 
data link command [additional command to insert]   

data link resource fuel (value) 
data link resource ammo (value) 
debug on  
debug off  
discharge energy 
fire weapon 
generate random 
gosub [routine name] 
goto [line label] 
gps scan x [x position] y [y position] 
if ammo is > # then [additional command]   
if ammo is < # then [additional command]   
if ammo is = # then [additional command]   
if bump barrier then [additional command] 
if not bump barrier then [additional command] 
if damage is > # then [additional command]  
if damage is < # then [additional command]  
if damage is = # then [additional command] 
if facing north then [additional command] 
if facing south then [additional command] 
if facing east then [additional command] 
if facing west then [additional command] 
if not facing north then [additional command]  



 48 

if not facing south then [additional command] 
if not facing east then [additional command]  
if not facing west then [additional command] 
if fuel is > # then [additional command]  
if fuel is < # then [additional command]  
if fuel is = # then [additional command] 
if grenade ready then [additional command]  
if grenade not ready then [additional command] 
if missile ready then [additional command] 
if missile not ready then [additional command]  
if no ammo then [additional command] 
if random is 1 then [additional command] 
if random is 2 then [additional command] 
if random is 3 then [additional command] 
if random is 4 then [additional command] 
if scan found barrier then [additional command]  
if scan found enemy then [additional command] 
if scan found friend then [additional command] 
if scan found flag then [additional command] 
if scan found mine then [additional command] 
if scan found nothing then [additional command] 
if shield is up then [additional command] 
if shield is down then [additional command] 
if...then...end if 
if x coordinate is < # then [additional command] 
if x coordinate is > # then [additional command] 
if x coordinate is = # then [additional command] 
if y coordinate is < # then [additional command] 
if y coordinate is > # then [additional command] 
if y coordinate is = # then [additional command] 
if  value (variable) (>, <, =, <>, >=, <=) (value or variable) then 

[additional command] 
iff code [any code number or word(s)] 
launch missile 
launch grenade  
lay mines on 
lay mines off 
long range scan 
lower shield 
math v# = (value) (+, -, *, /) (value) …  
move forward 
move backward 
name [unit name] 
password [security password] 
queen  
raise shield 
return 



 49 

scan forward 
scan right 
scan left 
scan perimeter 
scan position 1 
scan position 2 
scan position 3 
scan position 4 
scan position 5 
scan position 6 
scan position 7 
scan position 8 
scan relative 1 
scan relative 2 
scan relative 3 
scan relative 4 
scan relative 5 
scan relative 6 
scan relative 7 
scan relative 8 
self destruct 
set grenade fuse (value or variable) 
turn right 
turn left 

 
User Variables: 
v0, v1, v2, v3, v4, v5, v6, v7, v8, v9, va, vb, vc, vd, ve, vf, vg, 
vh, vi, vj, vk, vl, vm ,vn ,vo ,vp, vq, vr, vs, vt, vu, vv, vw, vx 
,vy, vz 
 
Hive (Team) Variables: 
h0, h1, h2, h3, h4, h5, h6, h7, h8, h9, ha, hb, hc, hd, he, hf, hg, 
hh, hi, hj, hk, hl, hm ,hn ,ho ,hp, hq, hr, hs, ht, hu, hv, hw, hx 
,hy, hz 
 
System Variables: 
#alive  
#bloodmodeon  
#burn   
#cloakstatus  
#cur_ammo  
#cur_fuel  
#cur_head  
#cur_life  
#cur_score  

#damset1  
#damset2  



 50 

#damset3  
#damset4  
#damset5  
#damset6  
#damset7  
#damset8  
#damset9  
#damset10  
#damset11  
#damset12  
#damset13  
#damset14  
#damset15  
#damset16  
#damset17  
#damset18  
#enemy_d  
#enemy_h  
#enemy_x  
#enemy_y  
#friend_d  
#friend_h  
#friend_x  
#friend_y  
#heatlevel 

#inbound  
#lastcybugon  
#max_fuel  
#max_life  
#overheatoff  
#overheatset 
#random  
#scan  
#set_ammo  
#shield  
#smartclickoff  
#snodeoff  
#strat_x  
#strat_y  
#x_pos   
#y_pos   
 

 



 51 

2.1 Command Language Syntax 

 
All commands must be typed using the syntax given 
including spaces.   
 
The A.I. compiler converts most commands to lower case 
before interpreting. 
 



 52 

2.2 Unit Identification and Security 
 
name [unit name] - This sets the units name. 
Example: 
 
name Warrior 1 
 
author [player name] - This sets the authors name. 
Example: 
 
author John Doe 
 
password [security password]  - This sets the units 
security password. If this line is entered in the units code 
the units AI will not allow editing or debugging without a 
proper security password entered in the battle setup 
screen. 
Example: 
 
password allison 
 
iff code [any code number or word(s)] - Identify friend or 
foe.  Units with matching IFF codes will show up as a 
friend on any scan. 
 
Units with matching IFF Codes are considered to be on the 
same team.  The team score is the total score of all 
Cybugs with matching IFF codes. 
Example: 
 
iff code skull crushers 
 
queen this mutates a perfectly innocent Cybug into a Hive 
Queen!  Queens are designed to be protected because the 
battle can be set to end upon her death. The dead queen 
penalizes her team with a point deduction to her score.  
Queens can be used as battle goals like a flag would be in 
a capture the flag game. 
 



 53 

Team games can be set up with Cybugs and Queens on 
each team using the same iff codes and team variables to 
transmit the Queens location to assist in her protection. 
Example: 
 
queen 
 
 



 54 

2.3 Debugging 
 
debug on - saves any following commands that are seen 
by the unit to the debug watch buffer.  This buffer can be 
viewed by selecting the debug watch button from the 
battle summary screen. 
Example: 
 
debug on 
 
WARNING: you may wish to remove these statements 
from AI files that you distribute because this will allow 
other users to see portions of your code when they view 
the debug watch for that unit. 
 
Note: an active debug watch will slow down the battle due 
to the extra processing overhead created. 
 
debug off - stops saving command information to the 
debug watch buffer. 
Example: 
 
debug off 
 
Debug on and off are used with the debug watch screen.  
This screen is only available in the registered version. 
 
beep - Plays the windows default beep sound.  Useful in 
debug mode to determine if a section of code is being read 
in the units AI. 
Example: 
 
if bump barrier then beep 
 
Note: 

; - Comments:  Lines that begin with a semi-colon are 
considered comments and will be ignored by the A.I. 
interpreter. 
Example: 
 
; this is a comment line 
 



 55 

2.4 Program Branching 
 
goto [label name] - This will jump from one section of the 
units AI code to another line (label) in the program.  Label 
names can be anything followed by a colon “:”.   
Example: 
 
start: 
move forward 
goto start 
 
gosub [routine name] - This will jump you from one 
section of the units AI code to another sub routine.  Sub 
routines start with line labels and end with the keyword 
return.   
Example: 
 
start: 
move forward 
if bump barrier then gosub bhit 
goto start 
 
bhit: 
generate random 
if random is 1 then turn right 
if random is 2 then turn left 
if random is 3 then gosub turnit 
if random is 4 then fire weapon 
return 
 
turnit: 
turn right 
turn right 
return 
 
 



 56 

2.5 Unit Rear Data and Resource Ports 
 
data link command [command] 
This inserts the command into the opposing Cybugs 
program at the current program read marker, it can be 
used against friendly and enemy Cybugs.  This will replace 
whatever command existed in that memory space with the 
new one which could damage the opposing Cybugs overall 
program.   
Note: this link is only possible if the two Cybugs are 
touching rear to rear.  
Examples: 
 
Data link command iff code myteamiff 
 
Data link command if missile ready then self destruct 
 
data link resource fuel (value) 
data link resource ammo (value) 
This removes specified resources from the opposing 
Cybug,  it can be used against friendly and enemy 
Cybugs.  
 
Note: this link is only possible if the two Cybugs are 
touching rear to rear and shields are down on the initiating 
Cybug. If the specified amount is larger than the Cybugs 
current reserves then the remaining reserves will be 
depleted and the linking Cybug will get what is available. 
 
Examples: 
 
Data link resource fuel 300 
 
Data link resource ammo 25 
 

 



 57 

2.6 Unit Damage Status and Repairs 
 
if damage is > # then [additional command]  
if damage is < # then [additional command]  
if damage is = # then [additional command] 
If damage is greater than, less than, or equal to the 
percent given then execute the command to the right of 
the word then. 
Note: do not include a percent sign “%”.  Valid percent 
entries are 0 through 99 
Example: 
 
if damage is > 95 then self destruct 
 
if fuel is > # then [additional command]  
if fuel is < # then [additional command]  
if fuel is = # then [additional command] 
If fuel is greater than, less than, or equal to the percent 
given then execute the command to the right of the word 
then. 
Note: do not include a percent sign “%”.  Valid percent 
entries are 0 through 99 
Example: 
 
if fuel is < 99 then goto hide 
 
attempt repairs - This will try to repair any damage that 
the unit has.  You have a 1 in 10 chance of it working.  
This requires a lot of energy therefore you cannot have 
shields raised while attempting this, a repair attempt will be 
ignored if the shield is raised. 
 
A successful repair attempt will lower your damage by one 
point. 
 
WARNING: There is also a 5% chance that you will 
damage the fuel system when you attempt repairs during 
operation this will cause your unit to burn fuel less 
efficiently. 
 
Advanced commands: 
#cur_life  &  #max_life: see system variables 



 58 

#cur_fuel & #max_fuel: See system variables. 
#burn: See system variables. 
 
 



 59 

2.7 Randomizing Units AI 
 
generate random - generates a random number between 
1 and 4. 
Example: 
 
generate random 
 
if random is 1 then [additional command] 
if random is 2 then [additional command] 
if random is 3 then [additional command] 
if random is 4 then [additional command] 
If the random number generated by the generate random 
command is equal to the number specified then execute 
the command to the right of the word then 
Example: 
 
if random is 4 then turn right 
 
Advanced command: 
#random: see system variables 
 
 



 60 

2.8 Scanning for objects and other 
units 
 
long range scan - This will scan the entire distance 
between the unit and the edge of the battlefield. 
 
gps scan x [x position] y [y position] - global position 
scanner looks at the specified x and y coordinates and 
returns what it finds. The x position and y position are the x 
and y coordinates of the battle map.   
Examples: 
 
gps scan x 10 y 13 
if scan found enemy then  

gosub hunter 
end if 
 
or 
 
gps scan x #enemy_x y #enemy_y 
 
Coordinates (top left corner =  x:1, y:1, bottom right corner 
x:43, y:30) 
 
scan forward - This will scan the area of 5 spaces out 
directly in front of the unit. 
 
Note: 5 spaces is the range of the primary weapon. 
 
scan right - This will scan the area of 5 spaces out from 
the right of the unit. 
 
scan left - This will scan the area of 5 spaces out from the 
left of the unit. 
 
scan perimeter - This will scan all spaces directly around 
the unit. 
 
scan position 1 - This scans one space directly north of 
the unit. 
 



 61 

scan position 2 - This scans one space directly northeast 
of the unit. 
 
scan position 3 -This scans one space directly east of the 
unit. 
 
scan position 4 -This scans one space directly southeast 
of the unit. 
 
scan position 5 -This scans one space directly south of 
the unit. 
 
scan position 6 -This scans one space directly southwest 
of the unit. 
 
scan position 7 -This scans one space directly west of 
the unit 
 
scan position 8 -This scans one space directly northwest 
of the unit. 
 
scan relative 1 - This scans one space directly in front of 
the unit. 
 
scan relative 2 - This scans one space directly front right 
of the unit. 
 
scan relative 3 -This scans one space directly right of the 
unit. 
 
scan relative 4 -This scans one space directly rear  right 
of the unit. 
 
scan relative 5 -This scans one space directly behind the 
unit. 
 
scan relative 6 -This scans one space directly rear left of 
the unit. 
 
scan relative 7 -This scans one space directly left of the 
unit 
 



 62 

scan relative 8 -This scans one space directly front left of 
the unit. 
 
cross scan - This scans one space north, south, east and 
west of the unit. 
 
corner scan - This scans one space northeast, southeast, 
northwest and southwest of the unit. 
 
if scan found barrier then [additional command]  
if scan found enemy then [additional command] 
if scan found friend then [additional command] 
if scan found flag then [additional command] 
if scan found mine then [additional command] 
if scan found nothing then [additional command] 
If the scan returns the presence of a a barrier, enemy, 
friend or flag then execute the command to the right of the 
word then. 
Note: If a scan that searches in more than one direction 
such as the cross scan, perimeter and corner scan finds 
more than one object type (i.e.; barrier flag and enemy) the 
scan will return items in the following priority (the top takes 
priority over the bottom): 
  

• Enemy / Friend 

• Mine 

• Flag 

• Barrier 
 
Example: 
 
scan position 5 
if scan found enemy then fire weapon 
 
 
Advanced commands: 
#scan, #enemy_h and #enemy_d : see system variables. 
 
#enemy_x  &  #enemy_y 
 
To help your unit locate other units in battle, you may use 
the variables #enemy_x and #enemy_y.  These variables 



 63 

will give you the X and Y locations of the closest AI unit 
(friend or enemy).  See the System variables section for 
more information on how to use these variables. The 
DroneD2.ai program is an example of how to utilize these 
variables. 
 
Example: 
 
if x coordinate is = #enemy_x then turn right 
 
 



 64 

2.9 Movement and location 
 
move forward - Moves unit one space forward in its 
current direction. This command will have no effect if a 
barrier blocks its path. 
Example: 
 
move forward 
 
 
move backward - Moves unit one space backwards from 
its current direction. This command will have no effect if a 
barrier blocks its path. 
Example: 
 
move backward 
 
 
turn right - Turns unit to face right from its current 
direction. 
Example: 
 
turn right 
 
turn left - Turns unit to face left from its current direction. 
Example 
 
turn left 
 
if facing north then [additional command] 
if facing south then [additional command] 
if facing east then [additional command] 
if facing west then [additional command] 
If the unit is facing north, south, east or west then execute 
the command to the right of the word then. 
Example: 
 
if facing east then turn left 
 
if not facing north then [additional command] 
if not facing south then [additional command] 
if not facing east then [additional command] 



 65 

if not facing west then [additional command] 
If the unit is not facing north, south, east or west then 
execute the command to the right of the word then. 
Example: 
 
if not facing east then turn left 
 
if x coordinate is < # then [additional command] 
if x coordinate is > # then [additional command] 
if x coordinate is = # then [additional command] 
if y coordinate is < # then [additional command] 
if y coordinate is > # then [additional command] 
if y coordinate is = # then [additional command] 
If the units X or Y coordinate equals the number specified 
then execute the command to the right of the word then. 
Coordinates (top left corner =  x:1, y:1, bottom right corner 
x:43, y:30) 
 
Example: 
if x coordinate = 18 then turn right 
 
if bump barrier then [additional command] - Use this to 
check and see if movement is blocked by a barrier.  If a 
barrier is blocking the units path then it will execute the 
command to the right of the word then. 
Example: 
 
if bump barrier then turn right 
 
if not bump barrier then [additional command] - Use this 
to check and see if movement is not blocked by a barrier.  
If a barrier is not blocking the units path then it will execute 
the command to the right of the word then. 
Example: 
 



 66 

if not bump barrier then turn right 
 
Advanced Command: 
#cur_head current heading 

1=North 
2=East 
3=South 
4=West 

 



 67 

2.10 Weapons Control 
 

Weapons use ammo and possibly fuel to use.  
The default settings are shown in an Appendix 
below.  These settings can be changed. 
 
fire weapon - Fires the units primary weapon.  This is a 
projectile that does maximum damage to an unshielded 
enemy unit at close range.  Shields and range effect the 
amount of damage given. Shielded units are completely 
protected from medium and long range shots. 
Note: the range of the weapon is 5 spaces in front of the 
Cybug. You cannot fire this weapon when shields are 
raised. 
Example: 
 
fire weapon 
 
launch missile - Launches missile.  The missile will travel 
in the direction fired until an object is hit.  Missiles do 90% 
damage to units that are hit with their shields down. They 
do 70% damage to any unit nearby the detonation with 
their shields down.  Units with shields up will receive 30% 
less damage overall.   
WARNING: do not fire the missile with your shields up or 
the missile will misfire doing 90% damage to the launching 
unit.  
 
Note: Missiles require 300 fuel and 10 ammo to fire. These 
damage and requirement settings can be changed. 
Example: 
 
if ammo is > 10 then 

launch missile 
end if 

 
 
launch grenade - Launches grenade.  The grenade will 
travel in the direction fired until a object is hit or its fuse 
setting has been reached.  grenades do 70% damage to 
units that are hit with their shields down. They do 50% 



 68 

damage to any unit nearby the detonation with their 
shields down.  Units with shields up will receive 30% less 
damage overall.   
WARNING: do not fire the grenade with your shields up. 
The grenade will misfire doing 70% damage to the 
launching unit.  
 
Note: Grenades require 200 fuel and 5 ammo to launch. 
These settings can be changed. 
 
Example: 
 
if ammo is > 10 then 

launch grenade 
end if 
 
 
set grenade fuse (value or variable) - This will set the 
distance a grenade travel before it detonates. Grenades 
will not travel less than 2 spaces unless they hit another 
object. 
Example: 

 
set grenade fuse 12 
 
 
discharge energy - This will discharge a blast of energy 
from your unit causing it one point of damage. Any enemy 
unit caught in this blast will take two points of damage 
(note: these damage settings can be changed). An energy 
discharge will destroy any flags and mines in the blast 
area.  This is a good way to sweep for mines and deny any 
other players flags if your damage is zero. 
Example: 
 
if scan found enemy then  

discharge energy 
end if 
 
self destruct - This is a last resort.  A unit that self 
destructs will not leave a flag.  Any unit caught in the blast 
wave of a self-destructing unit will receive blast wave 



 69 

damage equal to the amount of damage points remaining 
on the destructing unit and the maximum damage setting.  
Example: if maximum damage is set to 10 and the 
destructing unit has 3 damage points then the blast wave 
will do 7 points of damage to any unit directly next to the 
self destructing unit. 
Example: 
 
if damage is > 95 then self destruct 
 
lay mines on - While this is on the unit will lay a mine 
every time it moves forward or backward one space. A 
mine requires 2 ammo to produce. 
Example: 
 
if scan found enemy then  

lay mines on 
end if 
 
lay mines off - This stops the laying of mines when the 
unit moves one space forward or backward. A mine 
requires 2 ammo to produce. 
 
if ammo is > # then [additional command]   
if ammo is < # then [additional command]   
if ammo is = # then [additional command]   
If the Cybugs ammo is greater than, less than or equal to 
the number given then execute the command to the right 
of the word then.  
Note the maximum amount of ammo a unit can carry is 99. 
Example: 
 
if ammo is > 10 then lay mines on 
or 
if ammo is < 10 then lay mines off 
 
if no ammo then [additional command] 
If the unit has no ammo remaining then execute the 
command to the right of the word then. 
Example: 
 
if no ammo then goto hideout 



 70 

 
if missile ready then [additional command] 
If the missile has enough fuel and ammo to launch then do 
the command to the right of the word then. 
Example: 
 
if missile ready then launch missile 
 
Note: this doesn’t check the status of the shield be sure to 
lower shield before firing a missile. 
 
if missile not ready then [additional command] 
If the missile doesn't have enough fuel and ammo to 
launch then do the command to the right of the word then. 
Example: 
 
if missile not ready then fire weapon 
 
if grenade ready then [additional command] 
If the grenade has enough fuel and ammo to launch then 
do the command to the right of the word then. 
Example: 
 
if grenade ready then launch grenade 
 
Note: this doesn’t check the status of the shield be sure to 
lower shield before firing a grenade. 
 
if grenade not ready then [additional command] 
If the grenade doesn't have enough fuel and ammo to 
launch then do the command to the right of the word then. 
Example: 
 
if grenade not ready then fire weapon 
 
 
Advanced Commands: 
#cur_ammo & #set_ammo: See system variables. 

 
 



 71 

2.11 Protection 
 
raise shield - Raises shield to protect unit from medium 
and long range enemy fire and minimizes short range 
weapon blasts. The shield only protects against projectiles 
the shield is defenseless against energy discharges, 
overloads and self destruct blast waves. The shield 
requires most of the units power therefore, you cannot fire 
weapon or attempt repairs with the shield raised. Using the 
shield causes your Cybugs power source to generate heat.  
Overuse of the shield can cause your Cybug to overheat. If 
your Cybug overheats your power source will force a 
shutdown in order to cool off.  Your Cybug will be unable 
to function until it’s power source has cooled off and your 
shields will shut off until another raise shield command is 
executed.    
Example: 
 
lower shield 
fire weapon 
raise shield 
 
lower shield - Lowers shield to allow weapon firing and to 
attempt repairs.   
 
if shield is up then [additional command] 
if shield is down then [additional command] 
If the units shield is raises or lowered then execute the 
command to the right of the word then. 
Example: 
 
if shield is down then fire weapon 
 
Advanced Command: 
#shield: See system variables. 
 
cloak on 
This turns on the Cybugs cloaking device, enabling it to 
avoid nearest enemy scans using the enemy_x, y, d and h 
variables. 
Note: This device consumes 10 fuel and two ammo per 
click to run.   



 72 

Nearest enemy scans will return the nearest enemy that is 
not cloaked or will return a zero if the only enemy 
remaining is cloaked. 
Example: 
 
Cloak on 
 
cloak off 
This turns on the Cybugs cloaking device off.  This will 
happen on its own if the Cybug runs out of enough fuel or 
ammo to sustain it or if the Cybug uses a weapon. 
Example: 
 
Cloak off 
 
 



 73 

3.1 Nesting 
 
 if  … then 

… 
end if 
 
You may nest if statements by using the following syntax: 
 
if scan found flag then 
 if damage is = 0 then 
  turn right 
  turn right 
 end if 
end if 
 
the command compiler sees these commands in this 
manner: 
 
line 1: 
if scan found flag then if damage is  = 0 then turn right 
 
line 2: 
if scan found flag then if damage is  = 0 then turn right 
 
Warning: you must be careful not to check for two 
conditions at the same time for example: 
 
if scan found flag then 
 scan forward 
 if scan found barrier then 
  turn right 
 end if 
end if 
 
the command compiler sees these commands in this 
manner: 
 
line 1: 
if scan found flag then scan forward 
 
line 2: 
if scan found flag then if scan found barrier then turn right 



 74 

 
Notice that line 2 cannot work because scan cannot be 
both a flag and a barrier. 
 
Keep in mind how the compiler sees nested 
commands so you do not fall into this trap. 
 



 75 

3.2 User Variables 
 
You have 41 user variables that you can use in your AI 
code: 
 
v0, v1, v2, v3, v4, v5, v6, v7, v8, v9, va, vb, vc, vd, ve, 
vf, vg, vh, vi, vj, vk, vl, vm ,vn ,vo ,vp, vq, vr, vs, vt, vu, 
vv, vw, vx ,vy and vz 
 
team variables include: 
h0, h1, h2, h3, h4, h5, h6, h7, h8, h9, ha, hb, hc, hd, he, hf, hg, 
hh, hi, hj, hk, hl, hm ,hn ,ho ,hp, hq, hr, hs, ht, hu, hv, hw, hx 
,hy and hz 

 
Note: team variables are shared by all Cybugs with the 
same iff code. 
 
you may assign these variables any value and or text you 
wish and use them throughout your AI code.   
 
Note: remember that v0 and vo  are not the same variable 
one uses the Number zero and the other uses the letter 
“o”. 
 
Variables have their names and their values: 
 
if you want to reference its value you must place a tilde in 
front of it’s name example: 
 
if the variable v2 had a value of 67 and you wanted to use 
its value in a command  you would address v2 in the 
following manner: 
 
assign v7 ~v2 
 
This command passes the value of 67 to the variable v7.   
 
These variables can also be manipulated using the 
following commands and system variables: 
 
 



 76 

3.3 System Variables 
 
System variables can be referenced but cannot be 
changed.  They always begin with the “#” symbol. 
 
The system variables are: 
 
#cur_fuel Current fuel value 
#max_fuel Battle Start fuel setting 
#cur_ammo Current ammo value 
#set_ammo Battle start ammo setting 
#cur_score Current score 
#random Last random number generated 
#scan  Last scanned item 
  0 = nothing 
  1 = barrier 
  2 = enemy 
  3 = mine 
  4 = friend 
  5 = flag 
#shield  shield status 1 = on, 0 = off. 
#burn  current fuel burn rate 

Note: The burn rate will increase every 
time the unit sustains damage. 

#x_pos  current unit X coordinate 
#y_pos  current unit Y coordinate 
#cur_life current damage value 
#max_life maximum damage setting 
#cur_head current heading 

1=North 
2=East 
3=South 
4=West 

 
#enemy_x closest enemy x position 
#enemy_y closest enemy y position 
#enemy_h closest enemy heading 

1=North 
2=East 
3=South 
4=West 

#enemy_d closest enemy damage value 



 77 

#friend_x closest friend x position 
#friend_y closest friend y position 
#friend_h closest friend heading 

1=North 
2=East 
3=South 
4=West 

#friend_d closest friend damage value 
#strat_x x position of strategy node 
#strat_y y position of strategy node 
#alive  Number of remaining Cybugs 
#inbound Inbound enemy missile or grenade 
  0 = no inbound object 
  1 = from the north 
  2 = from the east 
  3 = from the south 
  4 = from the west 
#heatlevel Current Cybug heat level 
#cloakstatus       0 = off 

                             1 = cloaked 
#overheatset Current overheat setting  
#overheatoff 0= Overheat possible 

1=off 
#snodeoff 1=Strategy node off 

0=on 
#smartclickoff 1=1 command 1 click 

0=10 logic commands or 3 scan commands In 
a single click  

#bloodmodeon 1=bloodmode enabled 

0=off 
#lastcybugon 1=last cybug bonus on 

0=off 
 
Battle damage settings 

#damset1 Mine  
#damset2 Missile direct hit  
#damset3 Missile fragment 
#damset4 Primary weapon range 1 
#damset5 Primary weapon range 2 
#damset6 Primary weapon range 3 
#damset7 Overload 
#damset8 Energy discharge on enemy 
#damset9 Energy discharge on self 
#damset10 Missile direct hit with shield 
#damset11 Missile fragment with shield 



 78 

#damset12 Primary weapon range 1 shield 
#damset13 Primary weapon range 2 shield 
#damset14 Primary weapon range 3 shield 
#damset15 Primary weapon range 4  
#damset16 Primary weapon range 4 shield 
#damset17 Primary weapon range 5  
#damset18 Primary weapon range 5 shield 
#damset19 Grenade direct hit with shield 
#damset20 Grenade direct hit 
#damset21 Grenade fragment with shield 
#damset22 Grenade fragment 

 
 
Note: #inbound will report an inbound missile or grenade 
even if its path to your Cybug is blocked. 
 
Note: #strat_x and #strat_y will both return a value of 
zero if the strategy node is turned off in a tournament. 
 



 79 

3.4 Advanced Commands 
 
assign v# ~v#  
assign v# [any value] 
assign v# #(system_variable) 
 
The assign command assigns a variable a specific value 
 
examples: 
 
assign v6 ~v1 
or 
assign v2 300 
or  
assign v0 #cur_fuel 
 
You may also assign a variable a text value for use in your 
code for example: 
 
assign vh turn right 
if scan found enemy then ~vh 
 
 
math v# = (value) (+, -, *, /) (value) … 
The math statement is used to do math calculations to a 
variable.  It calculates from left to right. 
 
“+” = add 
“-“ = subtract 
“*” = multiply 
“/” = divide 
 
Example: 
 
math v4 = ~v4 + ~v3 
or 
math v4 = ~v4 + #cur_ammo 
or 
math v6 = ~v6 / ~v3 + 7 
 



 80 

Detailed example: 
 
if the value of v6 is 10 and the value of #cur_ammo is 
100 and the command read: 
 
math v0 = #curr_ammo / ~v6 + 4  
 
this would make v0 have a value of 14. 
 
This is what the compiler would see: 
 
v0 = (100 / 10) + 4 
v0 = 14. 
 
Looping Example: 
 
gosub loopit 
 
 
loopit: 
assign v1 1 
next: 
move forward 
math v1 = ~v1 + 1 
if value ~v1 = 10 then return 
goto next 
 
 
cmath v# = (simple or complex formula) … 
The cmath statement is used to do complex math 
calculations to a variable.  It calculates using advanced 
math rules. It calculates within parentheses and does 
calculations  on division and multiplication first. 
 
Example: 
 
cmath v4 = (~v4 + ~v3) * 3 
or 
cmath v4 = ~v4 + (#cur_ammo / 2) 
or 
cmath v6 = ((~v6 / ~v3)+(7 / 2)* 3) 
 



 81 

3.5 High level if statements 
 
if  value (variable) (>, <, =, <>, >=, <=) (value or variable) 
then [additional command] 
 
If the condition of the statement is true then do the 
command to the right of the word then. 
 
Examples: 
 
if value ~v6 > 100 then fire weapon 
or 
if value #set_ammo > ~v6 then  
 self destruct 
end if 
or  
assign v3 #scan 
if value ~v3 <> barrier then  

raise shield 
move forward 

end if 
 
 
Note: high level if statements must start with these two 
words: 
“if value” 
 
A common mistake in using high level if statements is 
made when the programmer forgets to use the value 
keyword! Many low level if statements do not use the value 
keyword and this causes some confusion. 
 
The registered debug watch feature will catch this. 
 
Examples: 
 
Correct Use: 
 
if value #set_ammo > ~v6 then 
 launch missile 
end if 
 



 82 

Incorrect Use: 
 
if #set_ammo > ~v6 then 
 launch missile 
end if 
 
 



 83 

4.1 Appendix: Battle Notes 
 
• If you take a flag with full power (no damage) your 

system will overload and you will take 50% damage.  

• If you are damaged and you take a flag all damage will 
be repaired and 30 ammo will be added along with 350 
units of fuel. 

• If a Cybug hits a mine it will do a percentage of the 
maximum damage setting to the unit.  

• Fuel and energy are separate.  Fuel is only needed for 
mobility and cooling for the onboard computer. 
Running out of fuel only means that your A.I. unit will 
not be able to move forward, backward or turn. 

• Strategy nodes will give the Cybug one point for every 
click that the Cybug occupies the square. If the Cybug 
can hold this position for most of the battle this can 
add up to thousands of points! 

• Map coordinates (top left corner = x:1, y:1, bottom 
right corner x:43, y:30) 

• In the past all commands took one click each, this put 
smarter Cybugs at a disadvantage, so now A.I. Wars 
calculates clicks in the following order: Movement and 
weapon command lines take up a single click, 
Scanning takes up about a third of a click and logic 
commands take up one tenth of a click per line with 
the exception of blank lines, labels, name, password 
and author commands which take up no part of a click 
at all.  To make your Cybug more efficient you can 
stack commands when possible into a single 
command line, for example: (Note: this example would 
appear on a single line in the AI code.)  
 
if facing north then if ammo is > 10 then if fuel is > 99 
then fire missile 

 
 



 84 

4.2 Appendix: Scanning 
 
A long range scan scans forward from the bugs location 
until it sees an object up to the full length of the battlefield. 
 
A gps scan scans any designated x and y coordinate given 
in the command. 
 

Scan examples are shown in the ‘View Cybug’ 
option, found in the title screen. 
 
 



 85 

4.3 Appendix: Weapons and Damage 
 
Note: Damage values reflect default settings. 
These settings can be changed. 
 
Primary Weapon (Projectile Gun) 
Range 5 Spaces. 
Maximum Damage to unshielded units within 1 space is 5  
Maximum Damage to unshielded units within 2 spaces is 4  
Maximum Damage to unshielded units within 3 spaces is 3  
Maximum Damage to unshielded units within 4 spaces is 2  
Maximum Damage to unshielded units within 5 spaces is 1  
Maximum Damage to shielded units within 1 space is 2 
Maximum Damage to shielded units within 2 spaces is 1 
Ammo used when fired is 1 
Shields must be down to fire 

 
Missiles 
Range Unlimited. 
Maximum Damage to Unshielded units is 90% 
Maximum Damage to shielded units is 60% 
Splash damage to Unshielded units is 70% 
Splash damage to shielded units is 40% 
Ammo used when fired is 10 
Shields must be down to fire 
 

Grenades 
Range Unlimited. Range set by fuse. 
Maximum Damage to Unshielded units is 70% 
Maximum Damage to shielded units is 40% 
Splash damage to Unshielded units is 50% 
Splash damage to shielded units is 20% 
Ammo used when fired is 5 
Shields must be down to launch 
 

Land Mines 
Range is limited to its occupying space. 
Maximum damage to Unshielded units is 50% 
Maximum damage to shielded units is 50% 
Ammo used to produce is 2. 
 
Energy Discharge 
Range all spaces surrounding Cybug. 
Damage caused to discharging Cybug is 1. 
Maximum damage to Unshielded units is 2. 
Maximum damage to shielded units is 2. 
No Ammo is used to discharge energy.  



 86 

Energy discharges also destroy Mines and Flags. 
 

Self Destruct 
Range all spaces surrounding Cybug. 
Damaged caused to destructing bug as well as all surrounding Bugs is 
the difference between the destructing bugs current damage and the 
maximum battle damage  setting. 
Blast Damage to all surrounding A.I.Bots is the same number. 
No ammo is used and no flag is left. 
 

System Overload 
System Overloads occur when a fully energized unit attempts to add 
more energy (taking a flag).  This causes an overload and will do 50% 
damage.  
 

Fuel Burn Rate 
This is the rate at which a unit burns fuel.  The burn rate increases every 
time a unit sustains damage and or fails at a repair attempt. The burn rate 
cannot be repaired or slowed during battle. 
 



 87 

Damage, Points & Burn Rate Grid 

 
WT = Weapon Type 
PW1 = Primary Weapon Range 1 
PW2 = Primary Weapon Range 2 
PW3 = Primary Weapon Range 3 
PW4 = Primary Weapon Range 4 
PW5 = Primary Weapon Range 5 
MSL = Missile 
MSLS = Missile Splash Damage 
GRE = Grenade 
GRES = Grenade Splash Damage 
MIN = Mine 
EDC = Energy Discharge 
SDT = Self Destruct 
SOL = System Overload 
AR = Ammo Required 
DCE = Damage caused to enemy with Shields Up/Down 
DCS = Damage Caused to Self with shields Up/Down 
EBR = Enemy Burn Rate Increase with shields Up/Down 
PTS = Points added to Score of  firing unit for hitting enemy with shields 
Up/Down 

 
WT AR DCE DCS EBR PTS 

PW1 1 2/5 0/0 2/5 40/100 
PW2 1 1/4 0/0 1/4 20/80      
PW3 1 0/3 0/0 0/3 0/60 
PW4 1 0/2 0/0 0/2 0/40 
PW5 1 0/1 0/0 0/1 0/20 
MSL 10 60/90% 90%/0 6/9 300/500 
MSLS 10 40/70% 40/70% 4/7 200/400 
GRE 5 40/70% 70%/0 12/18 600/1K 
GRES 5 20/50% 20/50% 2/4 100/200 
MIN 2 50/50% 0/0 5/5 0/0 
EDC 0 2/2 1/1 2/2 100/100 
SDT 0 * * 10 100/100 
SOL 0 0/0 50/50% 5/5 0/0 

 
 *Variable depending of remaining Energy Points 
** Missiles and grenades will score a direct hit on the firing 
unit itself, if fired while shields are still up. 
 
Note: You do not get points for harming yourself with a 
misfired or closely detonated  missile. 
 



 88 

Other Fuel Burn Factors: 
 

• All forward, backward and turning movements require 
fuel at a cost of one burn rate cycle.  Cybug 
movements become more costly as it’s burn rate 
increases. 

• One Fuel unit is burned every 10 Clicks for the 
onboard computer cooling device. 

• Missiles use 300 fuel to load and fire. 

• Grenades use 200 fuel to load and launch. 

• Cloaking uses 10 fuel per click. 
 



 89 

Other Scoring Factors: 
 

• 50 Points for every life point (number of remaining 
points between current Cybug damage and Maximum 
damage) remaining and -50 for every damage point 
over maximum damage.  This can be turned off using 
the Blood Mode option. 

• Final score equals total score minus the current units 
burn rate. 

 



 90 

 Advanced cMath Functions 
 

These functions can be embedded within cmath 

commands. 

 

ABS  

 

Returns a value of the same type that is passed to 

it specifying the absolute value of a number. 

 

Syntax 

 

Abs(number) 

 

The required number argument can be any valid 

numeric expression.  

 

Remarks 

 

The absolute value of a number is its unsigned 

magnitude. For example, ABS(-1) and ABS(1) both 

return 1. 

 



 91 

ATN  

 

Returns the arctangent of a number. 

 

Syntax 

 

Atn(number) 

 

The required number argument is any valid 

numeric expression. 

 

Remarks 

 

The Atn function takes the ratio of two sides of a 

right triangle (number) and returns the 

corresponding angle in radians. The ratio is the 

length of the side opposite the angle divided by the 

length of the side adjacent to the angle. 

 

The range of the result is -pi/2 to pi/2 radians. 

 

To convert degrees to radians, multiply degrees by 

pi/180. To convert radians to degrees, multiply 

radians by 180/pi. 

 

Note: Atn is the inverse trigonometric function of 

Tan, which takes an angle as its argument and 

returns the ratio of two sides of a right triangle. Do 

not confuse Atn with the cotangent, which is the 

simple inverse of a tangent (1/tangent). 

 



 92 

COS  

 

Returns the cosine of an angle. 

 

Syntax 

 

Cos(number) 

 

The required number argument is any valid 

numeric expression that expresses an angle in 

radians. 

 

Remarks 

 

The Cos function takes an angle and returns the 

ratio of two sides of a right triangle. The ratio is 

the length of the side adjacent to the angle divided 

by the length of the hypotenuse. 

 

The result lies in the range -1 to 1. 

 

To convert degrees to radians, multiply degrees by 

pi/180. To convert radians to degrees, multiply 

radians by 180/pi. 

 



 93 

EXP  

 

Returns e (the base of natural logarithms) raised to 

a power. 

 

Syntax 

 

Exp(number) 

 

The required number argument is any valid 

numeric expression. 

 

Remarks 

 

If the value of number exceeds 709.782712893, an 

error occurs. The constant e is approximately 

2.718282. 

 

Note: The Exp function complements the action of 

the Log function and is sometimes referred to as 

the antilogarithm. 

 



 94 

INT, FIX  

 

Returns a value of the type passed to it containing 

the integer portion of a number. 

 

Syntax 

 

Int(number) 

 

Fix(number) 

 

The required number argument is any valid 

numeric expression. If number contains Null, Null 

is returned. 

 

Remarks 

 

Both Int and Fix remove the fractional part of 

number and return the resulting integer value. 

 

The difference between Int and Fix is that if 

number is negative, Int returns the first negative 

integer less than or equal to number, whereas Fix 

returns the first negative integer greater than or 

equal to number. For example, Int converts -8.4 to 

-9, and Fix converts -8.4 to -8. 

 

Fix(number) is equivalent to: 

 

Sgn(number) * Int(Abs(number)) 

 



 95 

LOG  

 

Returns the natural logarithm of a number. 

 

Syntax 

 

Log(number) 

 

The required number argument is any valid 

numeric expression greater than zero. 

 

Remarks 

 

The natural logarithm is the logarithm to the base 

e. The constant e is approximately 2.718282. 

 

You can calculate base-n logarithms for any 

number x by dividing the natural logarithm of x by 

the natural logarithm of n as follows: 

 

Logn(x) = Log(x) / Log(n) 

 



 96 

RND  

 

Returns a random number. 

 

Syntax 

 

Rnd[(number)] 

 

The optional number argument is any valid 

numeric expression. 

 

Return Values  

 

If number is Rnd generates  

Less than zero The same number every time, using 

number as the seed.  

Greater than zero The next random number in the 

sequence.  

Equal to zero The most recently generated number.  

Not supplied The next random number in the 

sequence.  

 

Remarks 

 

The Rnd function returns a value less than 1 but 

greater than or equal to zero. 

 

The value of number determines how Rnd 

generates a random number: 

 

For any given initial seed, the same number 

sequence is generated because each successive 

call to the Rnd function uses the previous number 

as a seed for the next number in the sequence. 

 

Before calling Rnd, use the Randomize statement 

without an argument to initialize the random-

number generator with a seed based on the system 

timer. 

 



 97 

To produce random integers in a given range, use 

this formula: 

 

Int((upperbound - lowerbound + 1) * Rnd + 

lowerbound) 

 

Here, upperbound is the highest number in the 

range, and lowerbound is the lowest number in the 

range. 

 

Note: To repeat sequences of random numbers, 

call Rnd with a negative argument immediately 

before using Randomize with a numeric argument. 

Using Randomize with the same value for number 

does not repeat the previous sequence. 

 



 98 

SGN  

 

Returns a Integer indicating the sign of a number. 

 

Syntax 

 

Sgn(number) 

 

The required number argument can be any valid 

numeric expression. 

 

Return Values  

 

If number is   Sgn returns  

Greater than zero  1  

Equal to zero   0  

Less than zero  -1  

 

Remarks 

 

The sign of the number argument determines the 

return value of the Sgn function. 

 



 99 

SIN  

 

Returns the sine of an angle. 

 

Syntax 

 

Sin(number) 

 

The required number argument is any valid 

numeric expression that expresses an angle in 

radians. 

 

Remarks 

 

The Sin function takes an angle and returns the 

ratio of two sides of a right triangle. The ratio is 

the length of the side opposite the angle divided by 

the length of the hypotenuse. 

 

The result lies in the range -1 to 1. 

 

To convert degrees to radians, multiply degrees by 

pi/180. To convert radians to degrees, multiply 

radians by 180/pi. 

 



 100

SQR  

 

Returns the square root of a number. 

 

Syntax 

 

Sqr(number) 

 

The required number argument is any valid 

numeric expression greater than or equal to zero. 

 



 101

TAN  

 

Returns the tangent of an angle. 

 

Syntax 

 

Tan(number) 

 

The required number argument is any valid 

numeric expression that expresses an angle in 

radians. 

 

Remarks 

 

Tan takes an angle and returns the ratio of two 

sides of a right triangle. The ratio is the length of 

the side opposite the angle divided by the length of 

the side adjacent to the angle. 

 

To convert degrees to radians, multiply degrees by 

pi/180. To convert radians to degrees, multiply 

radians by 180/pi. 

 



 102

IMP 

 

Used to perform a logical implication on two 

expressions. 

 

Syntax 

 

result = expression1 Imp expression2 

 

The Imp operator syntax has these parts:  

 

Part Description  

Result Required; any numeric variable.  

expression1 Required; any expression.   

expression2 Required; any expression.   

 

Remarks 

 

The following table illustrates how result is 

determined:  

 

If expression1 is And expression2 is result is  

True   True   True  

True   False   False  

True   Null   Null  

False   True   True  

False   False   True  

False   Null   True  

Null   True   True  

Null   False   Null  

Null   Null   Null  

 

The Imp operator performs a bitwise comparison of 

identically positioned bits in two numeric 

expressions and sets the corresponding bit in result 

according to the following table:  

 



 103

If bit in expression1 is And bit in expression2 is 

The result is  

0  0  1  

0  1  1  

1  0  0  

1  1  1  

 



 104

EQV  

 

Used to perform a logical equivalence on two 

expressions. 

 

Syntax 

 

result = expression1 Eqv expression2 

 

The Eqv operator syntax has these parts:  

 

Part Description  

result Required; any numeric variable.  

expression1 Required; any expression.   

expression2 Required; any expression.   

 

Remarks 

 

If either expression is Null, result is also Null. 

When neither expression is Null, result is 

determined according to the following table:  

 

If expression1 is And expression2 is The result is  

True  True   True  

True  False   False  

False  True   False  

False  False   True  

 

The Eqv operator performs a bitwise comparison of 

identically positioned bits in two numeric 

expressions and sets the corresponding bit in result 

according to the following table:  

 

If bit in expression1 is And bit in expression2 is 

The result is  

0  0  1  

0  1  0  

1  0  0  

1  1  1  

 



 105

XOR  

 

Used to perform a logical exclusion on two 

expressions. 

 

Syntax 

 

[result =] expression1 Xor expression2 

 

The Xor operator syntax has these parts:  

 

Part Description  

result Optional; any numeric variable.  

expression1 Required; any expression.  

expression2 Required; any expression.  

 

Remarks 

If one, and only one, of the expressions evaluates 

to True, result is True. However, if either 

expression is Null, result is also Null. When neither 

expression is Null, result is determined according 

to the following table:  

 

If expression1 is And expression2 is Then result is  

True  True  False  

True   False   True  

False   True   True  

False   False   False  

 

The Xor operator performs as both a logical and 

bitwise operator. A bit-wise comparison of two 

expressions using exclusive-or logic to form the 

result, as shown in the following table:  

 

If bit in expression1 is And bit in expression2 is 

Then result is  

0  0  0  

0  1  1  

1  0  1  

1  1  0  



 106

 

OR  

 

Used to perform a logical disjunction on two 

expressions. 

 

Syntax 

 

result = expression1 Or expression2 

 

The Or operator syntax has these parts:  

 

Part Description  

result Required; any numeric variable.  

expression1 Required; any expression.   

expression2 Required; any expression.   

 

Remarks 

 

If either or both expressions evaluate to True, 

result is True. The following table illustrates how 

result is determined:  

 

If expression1 is And expression2 is Then result is  

True  True  True  

True   False   True  

True   Null   True  

False   True   True  

False   False   False  

False   Null   Null  

Null   True   True  

Null   False   Null  

Null   Null   Null  

 

The Or operator also performs a bitwise 

comparison of identically positioned bits in two 

numeric expressions and sets the corresponding bit 

in result according to the following table:  

 



 107

If bit in expression1 is And bit in expression2 is 

Then result is  

0   0   0  

0   1   1  

1   0   1  

1   1   1  

 



 108

AND  

 

Used to perform a logical conjunction on two 

expressions. 

 

Syntax 

 

result = expression1 And expression2 

 

The And operator syntax has these parts:  

 

Part Description  

result Required; any numeric variable.  

expression1 Required; any expression.   

expression2 Required; any expression.   

 

Remarks 

 

If both expressions evaluate to True, result is True. 

If either expression evaluates to False, result is 

False. The following table illustrates how result is 

determined:  

 

If expression1 is And expression2 is The result is  

True   True   True  

True   False   False  

True   Null   Null  

False   True   False  

False   False   False  

False   Null   False  

Null   True   Null  

Null   False   False  

Null   Null   Null  

 

The And operator also performs a bitwise 

comparison of identically positioned bits in two 

numeric expressions and sets the corresponding bit 

in result according to the following table:  

 



 109

If bit in expression1 is And bit in expression2 is 

The result is  

0   0   0  

0  1   0  

1   0   0  

1   1   1  

 



 110

MOD  

 

Used to divide two numbers and return only the 

remainder. 

 

Syntax 

 

result = number1 Mod number2 

 

The Mod operator syntax has these parts:  

 

Part Description  

result Required; any numeric variable.  

number1 Required; any numeric expression.   

number2 Required; any numeric expression.   

 

Remarks 

 

The modulus, or remainder, operator divides 

number1 by number2 (rounding floating-point 

numbers to integers) and returns only the 

remainder as result. For example, in the following 

expression 

 

, A (result) equals 5. 

 

A = 19 Mod 6.7 

 

Any fractional portion is truncated. However, if any 

expression is Null, result is Null. Any expression 

that is Empty is treated as 0. 

 



 111

NOT  

 

Used to perform logical negation on an expression. 

 

Syntax 

 

result = Not expression 

 

The Not operator syntax has these parts:  

 

Part Description  

result Required; any numeric variable.  

expression Required; any expression.   

 

Remarks 

 

The following table illustrates how result is 

determined:  

 

If expression is Then result is  

True   False  

False   True  

Null   Null  

 

In addition, the Not operator inverts the bit values 

of any variable and sets the corresponding bit in 

result according to the following table:  

 

If bit in expression is Then bit in result is  

0   1  

1   0  

 

 

 

 
 


